AI2sql Docs
Go to AppContact
  • 1. Introduction
    • 1.1. What is AI2SQL?
    • 1.2. Key features of AI2SQL
    • 1.3. How to get started with AI2SQL
    • 1.4. What Users Can Ask AI2SQL
  • 2. AI2SQL Dashboard
    • 2.1. Accessing the dashboard
    • 2.2. Generating SQL based on predefined datasets
    • 2.3. Exploring sample queries and use cases
  • 3. Managing Tables
    • 3.1. Importing tables using DDL
    • 3.2. Manually adding tables
    • 3.3. Editing, Updating, and Deleting Table Information
    • 3.4. Importing Database Schema via CSV
  • 4. AI2SQL Workspace
    • 4.1. Navigating the workspace
    • 4.2. Generating SQL for specific database engines
    • 4.3. Selecting tables for SQL generation
    • 4.4. Saving and organizing queries in the workspace
  • 5. Formatting SQL
    • 5.1. Accessing the SQL formatter
    • 5.2. Customizing formatting options
    • 5.3. Applying formatting to your SQL queries
  • 6. SQL Fixer
    • 6.1. Identifying SQL errors with SQL Fixer
    • 6.2. Understanding common SQL error messages
    • 6.3. Resolving SQL errors using AI2SQL's suggestions
    • 6.4. Handling Long SQL Queries
  • 7. Formula Generator
    • 7.1. Overview of Formula Generator
    • 7.2. Excel, Google Sheets, and regex formula translation
    • 7.3. Power BI DAX formula translation
    • 7.4. Airtable formula translation
    • 7.5. Using Formula Generator to enhance SQL queries
  • 8. CSV Analyzer
  • 9. Database Connectors
    • 9.1. Supported database connectors
    • 9.2. Setting up database connections (MySQL, SQL Server, or PostgreSQL)
    • 9.2.1. AI2sql Oracle Cloud Connector
    • 9.3. Setting up MongoDB Connectors
    • 9.4. Google BigQuery Setup and Service Account Key Creation
    • 9.5. Generating SQL queries for connected databases
    • 9.6. Setting up Snowflake Connectors
    • 9.7. Troubleshooting AI2sql Connector Issues: A Comprehensive Checklist
    • 9.8. Requesting new database connectors
    • 9.9. System Security Overview
  • 10. Dataset Questions Generation
  • 11. AI2SQL ChatGPT Plugin User Guide
    • 11.1. Introduction
    • 11.2. Getting Started
    • 11.3. Obtaining Your Token
    • 11.4. Using Your Token
    • 11.5. Connecting Your MSSQL (SQL Server) Database
    • 11.6. Connecting Your MySQL Database
    • 11.7. Connecting Your PostgreSQL Database
    • 11.8. Generating SQL Queries
    • 11.9. Troubleshooting
  • 12. Troubleshooting and Support
    • 9.1. Common issues and solutions
    • 12.2. Chat Support
    • 12.3. Contacting AI2SQL support
    • 12.4. Community resources and forums
  • 13. Templates
    • 13.1. Custom Template Creation
    • 13.2. Save the Template
    • 13.3. Generate SQL Using Template
  • 14. AI2sql: SQL Generation from Database ER Diagrams
    • 14.1. Introduction
    • 14.2. SQL Generation Process
    • 14.3. Troubleshooting & FAQs
  • 15. AI2sql API Integration
  • 16. AI2SQL Dictionary Template
  • 17. AI2sql GPTs
    • 17.1. Getting Started
    • 17.2. Obtaining Your Token
    • 17.3. Connecting Your MySQL Database
  • 18. Connecting Your Local Database
  • 19. SQL File Uploader
    • 19.1 Generating SQL queries
Powered by GitBook
On this page
  • Utilizing AI2sql API After Adding Tables
  • Schema Mapping

15. AI2sql API Integration

Previous14.3. Troubleshooting & FAQsNext16. AI2SQL Dictionary Template

Last updated 1 year ago

Integrate SQL generation in your application with AI2sql's API, allowing you to transform natural language into SQL queries seamlessly. For information on API access and application, please visit the for documentation and procedures.

Method: POST
Endpoint: https://web.ai2sql.io/api/1.1/wf/<BUSINESS_IDENTIFIER>
Authentication: Token <ACCESS_TOKEN>

Parameters:

prompt: A brief explanation of the data query you need.
model_version: Choose from sg-v1, sg-v2, sg-v3, sg-v4, or sg-v5. Default is sg-v1.
database_type: Supports one of these databases - MSSQL, MariaDB, Aurora, DynamoDB, or SQLite.
tables: An array of objects detailing your database schema.
tool: The tool parameter specifies the operation to perform: text2sql, optimizesql, 
explainsql

Replace <BUSINESS_IDENTIFIER> with the unique ID found in your AI2sql account dashboard URL.

Your <ACCESS_TOKEN> is available under Account Settings > API Access.

Choose from our simple or detailed schema structures based on your requirement.

Example Use Case

Suppose you want to query data from a table named customers. With AI2sql, you can simply describe your query, like "Get all customers who joined in the last month", and AI2sql will convert it into a corresponding SQL query.

curl -X POST 'https://web.ai2sql.io/api/1.1/wf/<BUSINESS_IDENTIFIER>' \
  -H 'Content-Type: application/x-www-form-urlencoded' \
  -H 'Authorization: Bearer YOUR_BEARER_TOKEN' \
  -d 'user=YOUR_EMAIL_ADDRESS' \
  -d 'prompt=Get all customers who joined in the last month' \
  -d 'tables=customers(id, name, join_date)' \
  -d 'tool=text2sql'

Utilizing AI2sql API After Adding Tables

Schema Mapping

After you have created and added tables to AI2sql, you can use the AI2sql API to interact with these tables efficiently. This powerful tool simplifies the process of querying and manipulating data in your database tables using natural language. For more detailed instructions on AI2sql tables and capabilities, refer to the AI2sql

This section should detail the mapping of natural language terms to their corresponding SQL tables, columns, and relationships in the database. can be customized for any database by filling in specific details related to the database schema, business rules, and terminology.

website
documentation
This template